SUFDMOD2 - Finite-Difference MODeling (2nd order) for acoustic wave equation

 sufdmod2 <vfile >wfile nx= nz= tmax= xs= zs= [optional parameters]    

 Required Parameters:                                      
 <vfile           file containing velocity[nx][nz]         
 >wfile           file containing waves[nx][nz] for time steps   
 nx=              number of x samples (2nd dimension)      
 nz=              number of z samples (1st dimension)      
 xs=              x coordinates of source                  
 zs=              z coordinates of source                  
 tmax=                  maximum time                             

 Optional Parameters:                                      
 nt=1+tmax/dt           number of time samples (dt determined for stability)
 mt=1             number of time steps (dt) per output time step 

 dx=1.0           x sampling interval                      
 fx=0.0           first x sample                           
 dz=1.0           z sampling interval                      
 fz=0.0           first z sample                           

 fmax = vmin/(10.0*h)   maximum frequency in source wavelet      
 fpeak=0.5*fmax   peak frequency in ricker wavelet         

 dfile=           input file containing density[nx][nz]          
 vsx=             x coordinate of vertical line of seismograms   
 hsz=             z coordinate of horizontal line of seismograms 
 vsfile=          output file for vertical line of seismograms[nz][nt]
 hsfile=          output file for horizontal line of seismograms[nx][nt]
 ssfile=          output file for source point seismograms[nt]   
 verbose=0        =1 for diagnostic messages, =2 for more        

 abs=1,1,1,1            Absorbing boundary conditions on top,left,bottom,right
                  sides of the model.                      
            =0,1,1,1 for free surface condition on the top       

 ...PML parameters....                                                
 pml_max=1000.0        PML absorption parameter                       
 pml_thick=0           half-thickness of pml layer (0 = do not use PML)

 Notes:                                              
 This program uses the traditional explicit second order differencing  
 method.                                             

 Two different absorbing boundary condition schemes are available. The
 first is a traditional absorbing boundary condition scheme created by
 Hale, 1990. The second is based on the perfectly matched layer (PML)  
 method of Berenger, 1995.                                 



 Authors:  CWP:Dave Hale
           CWP:modified for SU by John Stockwell, 1993.
           CWP:added frequency specification of wavelet: Craig Artley, 1993
           TAMU:added PML absorbing boundary condition:
                  Michael Holzrichter, 1998

 References: (Hale's absobing boundary conditions)
 Clayton, R. W., and Engquist, B., 1977, Absorbing boundary conditions
 for acoustic and elastic wave equations, Bull. Seism. Soc. Am., 6,
      1529-1540.

 Clayton, R. W., and Engquist, B., 1980, Absorbing boundary conditions
 for wave equation migration, Geophysics, 45, 895-904.

 Hale, D.,  1990, Adaptive absorbing boundaries for finite-difference
 modeling of the wave equation migration, unpublished report from the
 Center for Wave Phenomena, Colorado School of Mines.

 Richtmyer, R. D., and Morton, K. W., 1967, Difference methods for
 initial-value problems, John Wiley & Sons, Inc, New York.

 Thomee, V., 1962, A stable difference scheme for the mixed boundary problem
 for a hyperbolic, first-order system in two dimensions, J. Soc. Indust.
 Appl. Math., 10, 229-245.

 Toldi, J. L., and Hale, D., 1982, Data-dependent absorbing side boundaries,
 Stanford Exploration Project Report SEP-30, 111-121.

 References: (PML boundary conditions)
 Jean-Pierre Berenger, ``A Perfectly Matched Layer for the Absorption of
 Electromagnetic Waves,''  Journal of Computational Physics, vol. 114,
 pp. 185-200.

 Hastings, Schneider, and Broschat, ``Application of the perfectly
 matched layer (PML) absorbing boundary condition to elastic wave
 propogation,''  Journal of the Accoustical Society of America,
 November, 1996.

 Allen Taflove, ``Electromagnetic Modeling:  Finite Difference Time
 Domain Methods'', Baltimore, Maryland: Johns Hopkins University Press,
 1995, chap. 7, pp. 181-195.


 Trace header fields set: ns, delrt, tracl, tracr, offset, d1, d2,
                          sdepth, trid