SUK1K2FILTER - symmetric box-like K-domain filter defined by the cartesian product of two sin^2-tapered polygonal filters defined in k1 and k2

     suk1k2filter <infile >outfile [optional parameters]         

 Optional parameters:                                      
 k1=val1,val2,... array of K1 filter wavenumbers                 
 k2=val1,val2,... array of K2 filter wavenumbers                 
 amps1=a1,a2,...  array of K1 filter amplitudes            
 amps2=a1,a2,...  array of K2 filter amplitudes            
 d1=tr.d1 or 1.0  sampling interval in first (fast) dimension    
 d2=tr.d1 or 1.0  sampling interval in second (slow) dimension   
 quad=0           =0 all four quandrants                   
                  =1 (quadrants 1 and 4)                   
                  =2 (quadrants 2 and 3)                   

 Defaults:                                           
 k1=.10*(nyq1),.15*(nyq1),.45*(nyq1),.50*(nyq1)            
 k2=.10*(nyq2),.15*(nyq2),.45*(nyq2),.50*(nyq2)            
 amps1=0.,1.,...,1.,0.  trapezoid-like bandpass filter                 
 amps2=0.,1.,...,1.,0.  trapezoid-like bandpass filter                 

 The nyquist wavenumbers, nyq1 and nyq2, are computed internally.

 verbose=0  verbose = 1 echoes information                       

 tmpdir=     if non-empty, use the value as a directory path     
             prefix for storing temporary files; else if the     
               the CWP_TMPDIR environment variable is set use          
               its value for the path; else use tmpfile()        

 Notes:                                              
 The filter is assumed to be symmetric, to yield real output           

 Because the data are assumed to be purely spatial (i.e. non-seismic),
 the data are assumed to have trace id (30), corresponding to (z,x) data

 The relation: w = 2 pi F is well known for frequency, but there 
 doesn't seem to be a commonly used letter corresponding to F for the  
 spatial conjugate transform variables.  We use K1 and K2 for this.    
 More specifically we assume a phase:                            
            -i(k1 x1 + k2 x2) = -2 pi i(K1 x1 + K2 x2).          
 and K1, K2 define our respective wavenumbers.                   


 Credits:
     CWP: John Stockwell, November 1995.

 Trace header fields accessed: ns, d1, d2