SUKFRAC - apply FRACtional powers of i|k| to data, with phase shift

     sukfilter <infile >outfile [optional parameters]            

 Optional parameters:                                      
  power=0         exponent of (i*sqrt(k1^2 + k2^2))^power        
                  =0 ===> phase shift only                 
                  >0 ===> differentiation                  
                  <0 ===> integration                      
  sign=1          sign on transform exponent               
  d1=1.0          x1 sampling interval                     
  d2=1.0          x2 sampling interval                     
  phasefac=0            phase shift by phase=phasefac*PI         

 Notes:                                              
 The relation: w = 2 pi F is well known for frequency, but there 
 doesn't seem to be a commonly used letter corresponding to F for the  
 spatial conjugate transform variables.  We use K1 and K2 for this.    
 More specifically we assume a phase:                            
            -i(k1 x1 + k2 x2) = -2 pi i(K1 x1 + K2 x2).          
 and K1, K2 define our respective wavenumbers.                   

 Algorithm:                                                
      g(x1,x2)=Re[2DINVFFT{ ( (sign) i |k|)^power 2DFFT(f)}e^i(phase)]
 Caveat:                                             
 Large amplitude errors will result of the data set has too few points.

 Example, edge sharpening of images:                                   
    sukfrac < image_data  power=1 phasefac=-.5 | ...             


 Credits:
     CWP: John Stockwell, June 1997, based on sufrac.

 Trace header fields accessed: ns, d1, d2